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Approximate Consensus in Stochastic Networks
With Application to Load Balancing
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Abstract— This paper is devoted to the approximate
consensus problem for stochastic networks of nonlinear agents
with switching topology, noisy, and delayed information about
agent states. A local voting protocol with nonvanishing
(e.g., constant) step size is examined under time-varying environ-
ments of agents. To analyze dynamics of the closed-loop system,
the so-called method of averaged models is used. It allows us to
reduce analysis complexity of the closed-loop stochastic system.
We derive the upper bounds for mean square distance between
states of the initial stochastic system and its approximate aver-
aged model. These upper bounds are used to obtain conditions for
approximate consensus achievement. An application of general
theoretical results to the load balancing problem in stochastic
dynamic networks with incomplete information about the current
states of agents and with changing set of communication links
is considered. The conditions to achieve the optimal level of
load balancing are established. The performance of the system
is evaluated both analytically and by simulation.

Index Terms— Approximate consensus, stochastic discrete
networks, distributed information systems, load balancing.

I. INTRODUCTION

THE problems of distributed interaction in dynamical
networks attracted much attention in the last decade.

A number of survey papers [1], [2], monographs [3]–[5],
special issues of journals [6], [7] and edited volumes [8] have
been published in this area. This interest has been driven by
applications in various fields, including, for example, infor-
mation exchange in multiprocessor networks, transportation
networks, production networks, sensor and wireless networks,
coordinated motion for unmanned flying vehicles, submarines
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and mobile robots, distributed control systems for power
networks, complex crystal lattices, and nanostructured
plants [1]–[11].

Despite a large number of publications, satisfactory
solutions have been obtained mostly for a restricted class of
problems (see [1]–[8] and references therein). Factors such
as nonlinearity of agent dynamics, switching topology, noisy
and delayed measurements of agents’ states may significantly
complicate the solutions. Additional important factors are the
limited transmission rate in the channel and discretization
phenomenon. In the presence of various disruptive factors,
asymptotically exact consensus may be hard to achieve,
especially in a time-varying environment. For such cases,
approximate consensus problems need to be examined.

In this paper, we investigate the approximate consensus
problem in a multi-agent stochastic system with nonlinear
dynamics, noisy and delayed information about agent states,
and uncertainties in the topology and in the control protocol.
Such a problem is important for the analysis and control of
production networks, multiprocessors, sensor, wireless or mul-
ticomputer networks, etc. To study the considered stochastic
system we use the method of averaged models, which allows
us to reduce the analysis complexity. This method has been
adopted to analyze various types of information systems
(see [12]–[14]). As an example, the load balancing system
in a network with noisy and delayed information about the
load and with switching topology is studied. In contrast to
the existing stochastic approximation-based control algorithms
(protocols), local voting with nonvanishing step size is
considered.

The consensus problem on graphs with noisy
measurements of its neighbors states under general imperfect
communications is considered in [15] and [16], where
stochastic approximation-type algorithms with decreasing to
zero step size are used. Noisy convergence with nonvanishing
step-size was studied in [17], but the step parameters were
chosen differently for different agents and the network
scenario considered is a specific one. The stochastic gradient-
like (stochastic approximation) methods have also been used
in the presence of stochastic uncertainties [15], [18]–[21].
For the linear case without feedback in stochastic network
the problem of achieving an approximate consensus was
considered in [22]. However, in the works [15], [17]–[21],
the network scenarios considered are specific ones, much
simpler than the more general network scenarios considered
in this paper.

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 4, APRIL 2015

In [23], a stochastic approximation type algorithm was
proposed for solving consensus problem and justified for the
group of cooperating agents that communicate with imperfect
information in discrete time, under the conditions of dynamic
topology and delay. Under some general assumptions
a necessary and sufficient condition was proved for the
asymptotic mean square consensus when step size tends to
zero and only with a simple dynamics when changes equal
control actions. However, under time-varying environment
(e.g., feeding new jobs) using step sizes that decrease to zero
may greatly affect the convergence rate. In this paper, we focus
on a more general case of nonlinear functions, which describe
dynamics of agents, and nondecreasing to zero step size.

The importance of algorithms with nonvanishing step
size (gain) was realized and first convergence results were
obtained still in the 1970s [13], [24], see also references
in [14]. In [25]–[28] the efficiency of stochastic approximation
algorithms with constant step size was studied for some
specific cases.

As for the load balancing problem, numerous articles are
devoted to it (see [29]–[35]), indicating the relevance of this
topic. However, most of these articles do not consider noise
or delays. While in a single computer this assumption could
be rather realistic, if we consider networked systems, noise,
delays and possible link-“breaks” need to be accounted for.
The load balancing problem in centralized networks under
uncertainties about agent productivities was analyzed in [36]
where jobs among agents are redistributed by a load broker.
However, in case when there is no agent which connects
with every other agent, it is not possible to choose one of
the agents as the load broker. In this case, it is necessary to
consider decentralized networks. However, to the best of our
knowledge, few results for load-balancing in such distributed
networks are available.

In this paper, the results of our previous works [37]–[40] are
summarized, extended and improved. In particular, we relax
the assumption of the boundedness of weights of the control
protocol, replacing it by the boundedness of its variances.
In addition, new and much larger size simulation experiments
were performed and results added.

The contributions of the paper are several-fold. First, the
approximate consensus problem for a general network scenario
is investigated, which is a network of nonlinear agents with
switching topology, noisy and delayed measurements. Second,
in this approximate consensus problem, we consider a nonlin-
ear dynamics and the local voting protocol with step size αt

nondecreasing to zero. Third, to analyze the dynamics of the
stochastic discrete systems, the method of averaged models
(Derevitskii-Fradkov-Ljung (DFL)-scheme) [24], [41], [42] is
adopted. Fourth, the approximate consensus conditions are
obtained. In addition, to demonstrate the use of the obtained
results, the load balancing problem in a distributed network is
studied. Furthermore, simulation results validating the analysis
are presented.

The rest of the paper is organized as follows. In Section II,
the basic concepts of graph theory are introduced and the
consensus problem is posed. In Section III, the main assump-
tions are described and the consensus conditions are derived.

In Sections IV, the load balancing problem is considered, the
analytical and simulation results are presented and discussed.
Section V contains concluding remarks.

II. PRELIMINARIES

A. Concepts of Graph Theory

First we present the notation used in this article. Consider
a network as a set of agents (nodes) N = {1, 2, . . . , n}.

A directed graph (digraph) G = (N, E) consists of a set
N and a set of directed edges E . Denote the neighbour set
of node i as Ni = { j : ( j, i) ∈ E}. (Here and later the agent
index i is used as a superscript and not as an exponent.)

We associate a weight ai, j > 0 with each edge ( j, i) ∈ E .
Matrix A = [ai, j ] is called an adjacency or connectivity matrix
of the graph. Denote GA as the corresponding graph. The
in-degree of node i is the number of edges having i as head.
The out-degree of node i is the number of edges having i
as tail. If the in-degree equals to the out-degree for all nodes
i ∈ N the graph is said to be balanced. Define the weighted in-
degree of node i as the i -th row sum of A: di (A) = ∑n

j=1 ai, j

and D(A) = diag{d1(A), d2(A), . . . , dn(A)} is the corre-
sponding diagonal matrix. The symbol L (A) = D(A) − A
stands for the Laplacian of graph GA.

A directed path from i1 to is is a sequence of
nodes i1, . . . , is, s ≥ 2, such that (ik, ik+1) ∈ E,
k ∈ {1, 2, . . . , s −1}. Node i is said to be connected to node j
if a directed path from i to j exists. The distance from i to j
is the length of the shortest path from i to j . The graph is
said to be strongly connected if i and j are connected for all
distinct nodes i, j ∈ N .

A directed tree is a digraph where each node i , except the
roots, has exactly one parent node j so that ( j, i) ∈ E . We call
GA = (N , E) a subgraph of GA if N ⊂ N and E ⊂ E ∩
(N × N). The digraph GA is said to contain a spanning tree
if there exists a directed tree Gtr = (N, Etr ) as a subgraph
of GA.

The symbol dmax(A) denotes a maximal in-degree of
the graph GA. In correspondence with the Gershgorin
Theorem [43], we can deduce another important property of
the Laplacian: all eigenvalues of the matrix L (A) have
nonnegative real part and belong to the circle with cen-
ter at the point (0, dmax(A)) and with radius which equals
to dmax(A).

Let λ1, . . . , λn denote eigenvalues of the matrix L (A).
We arrange them in ascending order of real parts:
0 ≤ Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn). It is known, that if the
graph has a spanning tree then λ1 = 0 is a simple eigenvalue
and all other eigenvalues of L are in the open right half of
the complex plane.

The second eigenvalue λ2 of matrix L is important for
analysis in many applications. It is usually called Fiedler
eigenvalue. For undirected graphs it was shown in [3] that:

Re(λ2) ≤ n

n − 1
min
i∈N

di (A), (1)

and for the connected undirected graph G A

Re(λ2) ≥ 1

diamG A · volG A
, (2)
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where diamG A is the longest distance between two nodes and
volG A = ∑

i∈N di (A).
For all vectors the �2-norm will be used, i.e., a square root

of the sum of all its elements squares.

B. Problem Statement

1) The Network Model: Consider a dynamic network
of n agents that collaborate to solve a problem that each cannot
solve alone.

The concepts of graph theory will be used to describe
the network topology. Let the dynamic network topology be
modeled by a sequence of digraphs {(N, Et )}t≥0, where
Et ⊂ E changes with time. The corresponding adjacency
matrices are denoted as At . The maximal set of
communication links is Emax = {( j, i) : supt≥0 ai, j

t > 0}.
We assume that a time-varying state variable xi

t ∈ R

corresponds to each agent i ∈ N of the graph at time
t ∈ [0, T ]. Its dynamics are described for the discrete time
case as

xi
t+1 = xi

t + f i (xi
t , ui

t ), t = 0, 1, 2 . . . , T (3)

or for the continuous time case as

ẋ i
t = f i (xi

t , ui
t ), t ∈ [0, T ], (4)

with some functions f i (·, ·) : R×R → R, depending on states
in the previous time xi

t and control actions ui
t ∈ R.

Each agent uses its own state (possibly noisy) to form its
update strategy

yi,i
t = xi

t + wi,i
t , (5)

and if Ni
t �= ∅, noisy and delayed measurements of its

neighbors states

yi, j
t = x j

t−di, j
t

+ wi, j
t , j ∈ Ni

t , (6)

where wi,i
t , wi, j

t are noises, 0 ≤ di, j
t ≤ d̄ is an integer-valued

delay, and d̄ ≥ 0 is a maximal delay.
If ( j, i) ∈ Et then agent i receives information from agent j

for the purposes of consensus seeking.
2) The Local Voting Protocol:
Definition 1: A feedback on observations

ui
t = K i

t (yi, j1
t , . . . , y

i, jmi
t ), (7)

where { j1, . . . , jmi } ∈ {i} ⋃
N

i
t , N

i
t ⊆ Ni

t is called a protocol
(update algorithm) with topology (N, Et ).

In this paper, we consider the local voting protocol:

ui
t = αt

∑

j∈N
i
t

bi, j
t (yi, j

t − yi,i
t ), (8)

where αt > 0 are step sizes of the protocol, bi, j
t > 0 ∀ j ∈ N̄ i

t .
We set bi, j

t = 0 for other pairs i, j and denote Bt = [bi, j
t ] as

the matrix of the protocol.
Note, that protocol (8) differs from a frequently used such

protocol, where step parameters α vary for different agents
i ∈ N (for example, αi = 1/di (Bt), see [17]).

3) Consensus Concepts: The network is said to achieve
ε-consensus at time t if there exists a variable x� such that
||xi

t − x�||2 ≤ ε for all i ∈ N .
The network is said to achieve mean square ε-consensus at

time t if there exists a variable x� such that E||xi
t − x�||2 ≤ ε

for all i ∈ N .
Definition 2: The network is said to achieve asymptotic

mean square ε-consensus if E||xi
1 ||2 < ∞, i ∈ N and there

exists a variable x� such that limt→∞ E||xi
t − x�||2 ≤ ε for

all i ∈ N .
T (ε) is called time to ε-consensus, if the network achieves

ε-consensus for all t ≥ T (ε).
For reader’s convenience, we provide a list of key notation

used in this paper.

N {1, 2, . . . , n} — the set of nodes
E {i, j} — the set of edges, i, j ∈ N
ai, j weight of edge ( j, i) ∈ E
(N, E) digraph with nodes N and edges E
Ni neighbour set of node i
A adjacency or connectivity matrix
GA graph defined by the adjacency matrix A
di (A)

∑n
j=1 ai, j — weighted in-degree of

node i (i -th row sum of A)
dmax(A) maximal in-degree of the graph GA

D(A) diag{d1(A), d2(A), . . . , dn(A)} — diagonal
matrix of weighted in-degree of A

L (A) D(A) − A — Laplacian of graph GA
λ1, . . . , λn eigenvalues of the matrix L (A)
diamG A diameter, the longest distance between

two nodes
volG A

∑
i∈N di (A) — volume, the sum of

in-degrees
Emax {( j, i) : supt≥0 ai, j

t > 0} — maximal set of
communication links

xi
t state of agent i at time t

yi, j
t noisy and delayed measurement agent i

obtains from agent j at time t
wi, j

t noise in yi, j
t at time t

di, j
t integer-valued delay in yi, j

t at time t
d̄ maximal delay
ui

t control actions
K i

t protocol with topology (N, Et )
N̄ i

t subset of Ni
t at time t

αt > 0 step sizes of the local voting protocol
bi, j

t weight parameter of the local voting protocol
Bt matrix of the local voting protocol
x̄t [x1

t ; . . . ; xn
t ]

ūt [u1
t ; . . . ; un

t ]
I identity matrix of size n × n
1 vector consisting of 1’s
z̄1 left eigenvector of matrix P: z̄1 = [z1, . . . , zn]
T (ε) time to ε-consensus
x� consensus value
E mathematical expectation
Ex conditional expectation under initial

condition x
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EF conditional expectation with respect to
σ -algebra F

bi, j Ebi, j
t

pi, j
k probability that the delay di, j

t equals k
n̄ n(d̄ + 1)
Amax adjacency matrix of the averaged system
τt α0 + α1 + . . . + αt−1

τmax
∑T

t=0 αt

X̄ t [x̄t , x̄t−1, . . . , x̄t−d̄ ]
qi

t queue length of the atomic elementary jobs
of the agent i at time t

pi
t productivity of the agent i at time t

zi
t new job received by agent i at time t

Tt implementation time of jobs at time t
qi

t

pi
t

load of agent i at time t

Err
√

∑
i

(xi
t −x�)2

n — average residual
|D(t)| maximum deviation from the average load on

the network

III. MAIN RESULTS

In this section, we present the main results of this paper.
All proofs are included in the Appendix.

A. Main Assumptions

Let (	,F , P) be the underlying probability space
corresponding to the sample space, the collection of all events,
and the probability measure respectively.

We assume that the following conditions are satisfied:
A1. ∀i ∈ N functions f i (x, u) are Lipschitz in x and u:

| f i (x, u) − f i (x ′, u′)| ≤ L1(Lx |x − x ′| + |u − u′|),
and for any fixed x the function f i (x, ·) is such that
Ex f i (x, u) = f i (x, Ex u). The last part of Assumption
A1 is satisfied if the system is almost surely affine in the
control.

From this Lipschitz condition it follows that the growth rate
is bounded: | f i (x, u)|2 ≤ L2(Lc + Lx |x |2 + |u|2).

A2. a) ∀i ∈ N, j ∈ Ni
max the noises wi, j

t are centered,
independent and have bounded variance E(wi, j

t )2 ≤ σ 2
w.

b) ∀i ∈ N, j ∈ Ni
max appearances of variable edges ( j, i)

in graph GAt are independent random events.
c) ∀i ∈ N, j ∈ Ni

max weights bi, j
t in the protocol (8)

are independent random variables with bi, j = Ebi, j
t ,

σ
i, j
b = E(bi, j

t − bi, j )2 < ∞.
d) ∀i ∈ N, j ∈ Ni there exists a finite quantity d̄ ∈ N:

di, j
t ≤ d̄ with probability 1 and integer-valued delays di, j

t are
independent, identically distributed random variables taking
values k = 0, . . . , d̄ with probabilities pi, j

k .
Moreover, all these random variables and matrices are

mutually independent.
The next assumption is for a matrix Amax constructed as

follows. Specifically, if d̄ > 0, we add new “fictitious” agents
whose states at time t equal to the corresponding states of
the “real” agents at the previous d̄ time: t −1, t −2, . . . , t − d̄.
Then, Amax is a matrix of size n̄ × n̄, where n̄ = n × (d̄ + 1),

with

ai, j
max = pi, j mod d̄

j div d̄
bi, j mod d̄ , i ∈ N, j = 1, 2, . . . , n̄,

ai, j
max = 0, i = n + 1, n + 2, . . . , n̄, j = 1, 2, . . . , n̄. (9)

Here, the operation mod is a remainder of division, and div is
a division without remainder.

Note that if d̄ = 0, this definition of extended network
topology (of matrix Amax of size n × n) is reduced to

ai, j
max = bi, j , i ∈ N, j ∈ N. (10)

Also note that we have defined a matrix Amax in such a way
that Ex̄t ūt = −αtL (Amax)x̄t . We assume that the following
condition is satisfied for this network topology matrix:

A3. Graph (N, Emax) has a spanning tree, and for any edge

( j, i) ∈ Emax among the elements ai, j
max, ai, j+n

max , . . . , ai, j+d̄n
max of

the matrix Amax, there exists at least one non-zero element.

B. Analysis of the Closed Loop System Dynamics

Denote X̄t ∈ R
nd̄ as the extended state vector

X̄t = [x̄t , x̄t−1, . . . , x̄t−d̄ ], where x̄s ≡ [x1
s ; . . . ; xn

s ] and, for
−d̄ ≤ s < 0, let x̄s = [0; . . . ; 0].

Rewrite the dynamics of the agents in vector-matrix form:

X̄t+1 = U X̄t + F(αt , X̄t , w̄t ), (11)

where U is the following matrix of size n̄ × n̄:

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 . . . 0
I 0 0 . . . 0
0 I 0 . . . 0
...

...
. . .

...
...

0 0 . . . I 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (12)

where I is the identity matrix of size n×n, and F(αt , X̄t , w̄t ) :
R × R

n̄ × R
n2 → R

n̄ — vector function of the arguments:

F(αt , X̄t , w̄t )

=

⎛

⎜
⎜
⎜
⎜
⎝

· · ·
f i (xi

t , αt
∑

j∈N̄ i
t

bi, j
t ((x j

t−di, j
t

− xi
t ) + (wi, j

t − wi,i
t )))

· · ·
0nd̄

⎞

⎟
⎟
⎟
⎟
⎠
,

(13)

containing non-zero components only in the first n places.
Consider the averaged discrete model corresponding to (11):

Z̄t+1 = U Z̄t + G(αt , Z̄t ), Z̄0 = X̄0, (14)

where

G(α, Z̄) = G

⎛

⎜
⎝α,

z1

...

zn(d̄+1)

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

· · ·
f i (zi , αsi (Z̄))

· · ·
0nd̄

⎞

⎟
⎟
⎠, (15)

si (Z̄) =
∑

j∈Ni

bi, j ((

d̄∑

k=0

pi, j
k z j+kn) − zi )

= −di (Amax)z
i +

n̄∑

j=1

ai, j
maxz j , i ∈ N. (16)
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It turns out that the trajectory of solutions of the initial
system {X̄t } from (11) at time t is close in the mean square
sense to the average trajectory of the discrete system (14).

In the following theorem the upper bounds for mean square
distance between the solutions to the initial system and
solutions to its averaged discrete model will be given.

Theorem 1: If conditions A1, A2 are satisfied, 0 < αt ≤ ᾱ,
then there exists α̃ such that for ᾱ < α̃, the following
inequality holds:

E max
0≤t≤T

||X̄t − Z̄t ||2 ≤ c1τT ec2τ
2
T ᾱ, (17)

where τT = 2d̄(α0 + α1 + . . . + αT −1), c1, c2 > 0 are some
constants:

c1 = 8n

(

c̃ + ĉ(
nL2 Lc + ᾱ2c̃

c3
+ ||X̄0||2)eT ln(c3+1)

)

,

(18)

c2 = 21−d̄ L2
1(

Lx

α
+ 2ᾱ2||L (Amax)||22), (19)

where

c̃ = nL2
1σ

2
wb̄, c3 = d̃ + Lx(21+d̃/2 L1 + L2) + ᾱc′,

ĉ = 2L2
1nb̄, (20)

c′ = 21+d̃/2 L1||L (Amax)||2 + ᾱ(L2||L (Amax)||22 + ĉ),

(21)

b̄ = max
i

n∑

j=1

(bi, j )2 + σ
i, j
b , (22)

α = min
1≤t≤T

αt , d̃ = 0 if d̄ = 0, or d̃ = 1 if d̄ > 0.

Theorem 2: Let the conditions A1, A2 be satisfied,
0 < αt ≤ ᾱ, in the averaged discrete system (14) the
ε
4 -consensus is achieved for time T , and for constants c1, c2
from Theorem 1 the following estimate holds

c1τT ec2τ
2
T ᾱ ≤ ε

4
, (23)

then the mean square ε-consensus in the stochastic discrete
system (11) at time T is achieved.

Consider the important case where ∀i ∈ N f i (x, u) = u
and αt = α = const . In this case the discrete averaged
system (14) has the form:

Z̄t+1 = (I − ((I − U) − L (αAmax)))Z̄t . (24)

Theorem 3: If conditions A2, A3 are satisfied, αt = α > 0,
f i (x, u) = u for any i ∈ N , and condition α < 1

dmax
for

matrix Amax is satisfied, then the asymptotic mean square
ε-consensus in the averaged discrete system (24) is achieved.

In addition, if the ε
4 -consensus is achieved for the time T ( ε

4 )
in the averaged discrete system (24) and there exists
T0 > T ( ε

4 ) for which the parameter α provides the condition

C̄1eC̄2α ≤ ε

4
, (25)

where

C̄1 ≡ 8n

(

c̃ + ĉ(
α2c̃

c3
+ ||X̄0||2)eT ln(c3+1)

)

τt ,

T (
ε

4
) < T < T0

C̄2 ≡ 22−d̄α2||L (Amax)||22, c̃ = n2b̄2σ 2
w,

ĉ = 2n(n − 1)b̄2τ 2
t ,

c3 = 21+d̃ + 2α2(||L (Amax)||22 + ĉ),

where d̃ = 0 if d̄ = 0 or d̃ = 1 if d̄ > 0, then the mean
square ε-consensus at time t : T ( ε

4 ) ≤ t ≤ T in the stochastic
discrete system (11) is achieved.

Note that in [23], under certain assumptions similar to
the conditions of Theorem 3, the necessary and sufficient
condition for achieving the mean square consensus in case
when the step sizes αt tend to zero and the second term of (3)
has a simple form: f i (xi

t , ui
t ) = ui

t were proved. However,
in the analysis above, the more general case of the form of
functions f i (xi

t , ui
t ) and step sizes αt nondecreasing to zero

has been considered.

IV. THE LOAD BALANCING PROBLEM

To demonstrate the application of the results derived in the
previous section, the load balancing problem is considered in
this section.

A. Problem Statement

In recent years, distributed parallel computing systems have
been increasingly used. For such systems the problem of
separating a package of jobs among several computing devices
is important. Similar problems arise also in transport, logistics
and production networks.

We consider a system that separates the same type of jobs
among different agents, for parallel computing or production
with feedback. Let N = {1, . . . , n} be a set of intelligent
agents, each of which serves the incoming requests using a
first-in-first-out queue. Jobs may be received at different times
and by different agents.

At any time instant t , the state of agent i , i ∈ N , is described
by two characteristics:

• qi
t is the queue length of the atomic elementary jobs of

the agent i at time t ;
• pi

t is the productivity of the agent i at time t .
The dynamics of each agent are described by

qi
t+1 = qi

t − pi
t + zi

t + ui
t ; i ∈ N, t = 0, 1, . . . , T, (26)

where zi
t is the new job received by agent i at time t , ui

t is the
result of jobs redistribution between agents, which is obtained
by using the selected protocol of jobs redistribution. In the
dynamics we assume that

∑
i ui

t = 0, t = 0, 1, 2, . . ..
We assume, that each agent i ∈ N at time t can receive the

following information to form the update strategy:
• noisy observations about its queue length

yi,i
t = qi

t + wi,i
t , (27)
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• noisy and delayed observations about its neighbors queue
length, if Ni

t �= ∅
yi, j

t = q j

t−di, j
t

+ wi, j
t , j ∈ Ni

t , (28)

where wi, j
t are noises, 0 ≤ di, j

t ≤ d̄ is an integer-valued
delay, and d̄ is a maximal delay,

• information about its productivity pi
t and about its

neighbors productivities p j
t , j ∈ Ni

t .

Let the fraction qi
t

pi
t

denote the load of agent i at time t , and

Tt denote the overall implementation time of jobs at time t ,
where

Tt = max
i∈N

qi
t

pi
t
. (29)

The objective is to balance the load such that the overall
implementation time can be minimized.

B. Analytical Results

To achieve the goal it is natural to use a redistribution
protocol for jobs over time. Let’s consider a stationary case
where all jobs come to different agents at the initial time
and no new job is received later. For this case, we have the
following results.

Lemma 1 (About the Optimal Update Strategy): For the
stationary case, among all possible options for redistributing
jobs, the minimum completion time is achieved when

qi
t /pi

t = q j
t /p j

t , ∀i, j ∈ N. (30)
Corollary 1: If we take xi

t = qi
t /pi

t as the state of agent i
in a dynamic network, then the goal — to achieve consensus
in the network — will correspond to the optimal job redistri-
bution between agents in the stationary case.

Note, that the optimality is understood in sense that if no
new tasks arrives, all agents will finish at the same time.

These above results imply that the load balancing problem
can essentially be treated as a consensus problem, i.e., how to
keep the load equal among all agents in the network.
We highlight that for this special case the model (26)
corresponds to the difference equation (3).

Based on this intuition, we extend to the more general case
where new jobs may arrive to any of the n agents at any time t .
Specifically, consider the protocol (8), where ∀ i ∈ N ,
∀ t denote N̄ i

t = Ni
t and bi, j

t = p j
t /pi

t , j ∈ Ni
t . Here, we

assume that pi
t �= 0 ∀ i . Then, the dynamics of the load-

balancing system (26) with local voting protocol (8) is as
follows:

xi
t+1 = xi

t − 1 + zi
t/pi

t + αt

∑

j∈Ni
t

bi, j
t (yi, j

t /p j
t − yi,i

t /pi
t ).

(31)

where αt are step sizes of the protocol, yi, j
t are noisy and

delayed observation about j -th agents queue length, zi
t is the

new job received by agent i at time t .
It is important to say that we suggest the protocol which

defines the intentions of agents, but in practice, when the pro-
tocol is implemented, it performs through a local coordination
between all agents. As a result of this coordination, packages

will not be lost. Specifically, the use of protocol (8) is justified
in practice if additional assumptions are satisfied. First of all,
it is assumed that the corresponding input data are exchanged
instantaneously. In particular, in practice for the problem of
load balancing in decentralized network, the protocol (8)
requires additional coordinations of the sizes of the packages
transmitted between the agents. Neither “overconsumption”
nor “underconsumption” is permitted when relocating
resources (or tasks) between the nodes. Additionally, one has
to verify coordination of package forwarding since various
collisions could occur due to the delays and noise. Additional
checks and coordinations between the neighbors should be
executed to satisfy this condition. With the use of the local
voting protocol, each node determines how many tasks it can
“give away” or “receive”. Then the nodes, which are ready
to accept tasks, send requests to their neighbors about the
amounts they are ready to give at the given time instant.
Each “receiving” node sends in response to these requests
a confirmation of how much task it can accept from one or
another node and coordinates this amount with it (generally,
each node orients to its current values ũi

t recommended by
the local voting protocol). It is assumed that the procedure
of task coordination and transmission needs much less time
than one cycle of the dynamic system. For example, in
the problem of order allocation for cargo transportation the
tomorrow’s tasks are coordinated at night upon completion of
the current workday. In Section IV-C the simulation results
were implemented as described above.

If the graph is balanced, for the general setting with
random uncertainties in the measurements, in the network
topology, and in the protocol (8), Theorem 3 allows to reduce
the study of the dynamics of the load balancing system to
the investigation of the corresponding averaged discrete
model.

Theorem 4: If αt = α = const is sufficiently small, the
productivities stabilize over time: ∃ E pi

t = p̄i > 0, ∀ i ∈ N ,

E (wi, j
t )2

(pi
t )

2 ≤ σ̄ 2
w, conditions A2, A3 and the following condition

for matrix Amax is satisfied

α <
1

dmax
, (32)

then in the averaged discrete system the ε
4 -consensus is

achieved for the time T ( ε
4 ), and there exists T0 > T ( ε

4 ) for
which the parameter α ensures the condition

C̄1eC̄2α ≤ ε

4
, (33)

where

C̄1 ≡ 8n

(

c̃ + ĉ(
α2c̃

c3
+ ||X̄0||2)eT ln(c3+1)

)

τt ,

C̄2 ≡ 22−d̄α2||L (Amax)||22, c̃ = n(σw/ p̄i )
2
b̄,

ĉ = 2nb̄τt ,

c3 = 21+d̃ + 2α2(||L (Amax)||22 + ĉ),

d̃ = 0 if d̄ = 0, or d̃ = 1 if d̄ > 0, then in the stochastic
discrete system for the n agents at time t : T ( ε

4 ) ≤ t ≤ T ,
the ε-consensus is achieved.
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Fig. 1. Maximal set of communication links Emax (left); Network topology
at time t (right).

We remark, that in Theorem 4, the conditions for
productivities of agents are rather general. They hold for an
adaptive problem statement, when information about the actual
productivities is specified over time. In addition, due to the
fact that the step sizes αt of the protocol (8) do not tend to
zero, the protocol considered shows good performance in the
more general case. In a number of similar cases the validity of
applying stochastic approximation update strategies with
non-decreasing to zero step sizes in nonstationary problems
could be theoretically proved (see [25]).

C. Simulation Results

1) The Six-Node Case: To show the convergence to
consensus and to compare the initial stochastic system with
the averaged model, we give an example of simulation for a
computer network consisting of six computing agents.

Fig. 1 (left) shows the network, indicating the possible
communication links, some of which may be “closed” and
“opened up” over time. The network topology is random at
any time t , and particularly, Link 1-3 or 1-2 appears with
probability 1/2 (Fig. 1 (right)).

In the case of uniformly distributed delays in the measure-
ments, where the integer-valued delay di j

t equals 0 or 1 with
probability 1/2, d̄ = 1, pi j

0 = pi j
1 = 1/2, we extend the state

space:

X̄t = [x1
t , . . . , xn

t , x1
t−1, . . . xn

t−1] ∈ R
2n. (34)

Matrix G of the corresponding averaged discrete model (14)
is as follows:

G =
(

1
2 Hα 1

2 Hα
0 0

)

, (35)

where

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
2

p2

p1
1
2

p3

p1 0 0 0

0 0 0 p4

p2 0 0

0 0 0 0 p5

p3 0

0 0 0 0 p5

p4 0

0 0 0 0 0 p6

p5

p1

p6 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (36)

We set the initial queue lengths and the productivities
of agents, and assume that the productivities of nodes do

Fig. 2. Dynamics of the agents xi
t at the start and time to consensus.

not change over time. In addition, we highlight that the
information about the queue lengths is measured with random
noise and delays.

We consider two cases, the special case and the general
case, as discussed in the previous subsection. We use constant
step size αt = α = 0.1. The dynamics of the agents xi

t
with local voting protocol (31) is shown in Fig. 2 and 4.(a)
respectively.

Fig. 2 shows how the system operates in the special case
when there are no new incoming jobs during the system work
(only the initial load). Each line, corresponding to one node,
indicates how the load xi

t evolves over time. These lines
also show how the system evolve to reach load-balancing or
consensus.

Now we estimate the time to consensus. We calculate
eigenvalues and obtain that |Re(λ2)| = 0.7737. By known
formula

T (ε) = 1

2Re(λ2)
ln

(
(n − 1)||x0 − x�1||2

ε

)

, (37)

we can calculate T (ε) for continuous system. If ε = 0.1
then T (ε) = 12.8883. If ε = 1 then T (ε) = 11.4003. The
corresponding values are marked on Fig. 2.

To support the claim that we can use the averaged model
to study our initial stochastic system, Fig. 3 is presented. The
figure compares the dynamics of algorithm (8) and that of
the averaged model described in Sec. III. Fig. 3 shows that
trajectories of the stochastic discrete system (dotted lines)
are close with the limiting trajectories of the average system
(dashed lines).

To characterize the quality of the protocol (8) in terms of
convergence of trajectories to consensus x�, we use the average

residual, defined as Err =
√

∑
i

(xi
t −x�)2

n .
Fig. 4.(a) shows the dynamics of the system in a more

general 6-node case where new jobs can come to different
agents during the system work. New jobs arrive at a random
node at random times. Specifically, Fig. 4.(a) indicates how
the system tries to reach consensus using the local voting
protocol (8) when there are new incoming jobs. In addition, the
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Fig. 3. Comparison of trajectories of the stochastic discrete system and its averaged model. (a) All nodes. (b) For the first node. (c) For the second node.

Fig. 4. The 6-node general case. (a) Dynamics of the agents xi
t .

(b) Convergence to consensus.

quality of the protocol (8) is indicated by Fig. 4.(b), where the
corresponding evolvement of average residuals is displayed.
It shows, how the average residual changes over time: it
rapidly reduces and retains at low level until new jobs received,
and then it reduces again. The simulation results shows the

Fig. 5. Convergence to consensus with different step sizes.

good performance of the protocol (8) in general case. This is
explained by the properties of the stochastic approximation
type algorithm with non-decreasing step, since each time
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Fig. 6. An example of network topology.

instant when new jobs received might be considered as an
initial time instant. In a number of similar cases the validity
of applying stochastic approximation update strategies with
non-decreasing to zero step sizes in nonstationary problems
could be theoretically proved (see [25]).

In Fig. 5 there are graphs for the average residuals with
using of different parameters of step sizes α. In first four
figures we used constant step sizes. It could be seen that
if we increase the step size then the time to consensus will
decrease until reaching a certain level. However, if we use
the decreasing step size (αt = 1/t) as shown in the last
figure in Fig. 5 then the convergence rate decreases with
time.

Generally, when we reach the certain level of accuracy we
do not need to run protocol any more. However, the simulation
results show, that even if we run in beyond time T , the mean
square error does not increase.

2) The 1024-Node Case: To show how well the approach
works to achieve load balancing and the advantage of redistri-
bution of jobs in a larger network, we consider a network of
1024 agents. The focus here is to compare the performance of
the system adopting the local voting protocol (8) to redistribute
load with that without load-redistribution.

In the simulation, the time between events in the
input stream is exponentially distributed with parameter
din = 1/3000, and the normalized “complexities” of jobs are
also exponentially distributed with parameter dp = 1 (where,
the normalized “complexity” of job is referred to as the time,
required to perform the job on a single agent with productivity
p = 1). The number of incoming jobs is 106. The choice of
an agent, which receives the next job is performed randomly
by the uniform distribution of 1024 agents.

Agents are connected in a circle. In addition, there are
n random connections between agents on each iteration, that
change over time. An example snapshot of the network is
shown in Fig. 6.

Consider the case when all tasks arrive at different time
instants in the interval from 1 to 2000. Fig. 7 shows typical
results of simulations. In these figures, solid lines correspond
to the case with redistribution of jobs by the local voting
protocol, and dashed lines — to the case without redistribution,
where symbol |D(t)| stands for the maximum deviation from
the average load on the network. Fig. 7 shows that the

Fig. 7. The 1024-node general case. (a) The number of jobs in the queue in
case, when all jobs arrive at different time instants. (b) Maximum deviation
from the average load on the network.

performance of the adaptive multi-agent strategy with the
redistribution of jobs among “connected” neighbors is signif-
icantly better than the performance of the strategy without
redistribution.

V. CONCLUSION

In this paper, the approximate consensus problem statement
of multi-agent stochastic system with nonlinear dynamics,
noise, delays and switched topology was introduced. In con-
trast to the existing stochastic approximation-based update
algorithms (protocols), the local voting protocol with nonva-
nishing step size was proposed. Nonvanishing (e.g., constant)
step size ensures better transients in the time-invariant case
and provides bounded error in the case of time-varying loads
and agent states. The price to pay is replacement of the mean
square convergence with an approximate one.

Analytic conditions for approximate consensus in stochastic
network with noise, delays and switched topology were
proposed. These conditions are based on the method of aver-
aged models. This method allows to reduce the complexity of
the closed loop system analysis. In this paper, upper bounds
for the mean square distance between the initial system and
its approximate average model were proposed. The proposed
upper bounds were used to obtain conditions for approx-
imate consensus achievement. In contrast to our previous
works, we relaxed the assumption of the weights boundedness
of the protocol replacing it by the boundedness of its
variances.

The theoretical results were applied to the load balancing
problem in a stochastic network. Theoretical results were
confirmed analytically and by simulation. Large size simu-
lation experiments were performed for a stochastic computer
network. They showed that the performance of the adaptive
multi-agent strategy with the redistribution of jobs among
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“connected” neighbors is significantly better than the perfor-
mance of the strategy without redistribution.

APPENDIX A
PROOF OF THEOREM 1

Proof: The following facts will be useful, for the
remainder.

Proposition 1: For z̄ ∈ R
n and matrix Amax the following

inequality holds

n∑

i=1

(
∑

j∈Ni
max

ai, j
maxz j )2 ≤ ||Amax||22||z̄||2. (38)

Proof: Using the Cauchy-Schwarz inequality we obtain

n∑

i=1

(
∑

j∈Ni
max

ai, j
maxz j )2

≤
n∑

i=1

(
∑

j∈Ni
max

ai, j
max

2
)(

∑

j∈Ni
max

z j 2
)

≤ (

n∑

i=1

n∑

j=1

ai, j
max

2
)(

n∑

j=1

z j 2
) ≤ ||Amax||22||z̄||2. (39)

Proposition 2:

||s̄(z̄)||2 ≤ 2||L (Amax)||22||z̄||2. (40)
Proof: Using the result of Proposition 1 yields

||s̄(z̄)||2

=
n∑

i=1

(

n∑

j=1

ai, j
max(z

j − zi ))2 ≤
n∑

i=1

(di (Amax)|zi |

+ |
∑

j∈Ni
max

ai, j
maxz j |)2 ≤ 2(

n∑

i=1

di (Amax)
2 + ||Amax||22)||z̄||2

= 2||L (Amax)||22||z̄||2. (41)

Proposition 3: If A2 is satisfied then si (x̄) = 1
αt

EFt−1 ui
t

and the following inequality holds

1

α2
t

EFt−1ui
t
2 ≤ (||x̄t − xi

t 1||2 + 2σ 2
w)b̄, i ∈ N. (42)

Proof: By the definition of the protocol (8)

1

αt
ui

t =
∑

j∈N̄ i
t

bi, j
t ((x j − xi ) + (wi, j

t − wi,i
t )). (43)

It follows from conditions A2 that si (x̄) = 1
αt

EFt−1ui
t .

By the centrality of observation noise (on condition A2a)
we consecutively derive

1

α2
t

EFt−1 ui
t
2

= EFt−1(
∑

j∈N̄ i
t

bi, j
t ((x j

t − xi
t ) + (wi, j

t − wi,i
t )))2

= EFt−1(
∑

j∈N̄ i
t

bi, j
t (x j

t −xi
t ))

2+ EFt−1(
∑

j∈N̄ i
t

bi, j
t (wi, j

t − wi,i
t ))2

≤ ||x̄t −xi
t1||2EFt−1

∑

j∈N̄ i
t

(bi, j
t )2 + EFt−1

∑

j∈N̄ i
t

bi, j
t

2

×(wi, j
t

2 + wi,i
t

2
) ≤ (||x̄t − xi

t 1||2 + 2σ 2
w)b̄. (44)

Proposition 4:

||U X̄ ||2 ≤ 2d̃ ||X̄ ||2, . . . , ||Ud̄ X̄ ||2
≤ 2d̄ ||X̄ ||2, . . . , ||Uk X̄ ||2 ≤ 2d̄ ||X̄ ||2, (45)

Proof: By the definition of matrix U it is easy to obtain
the first inequality, and the rest we get by induction on k and
by the following equality

∀k > d̄ Uk = Ud̄ =

⎛

⎜
⎜
⎜
⎝

I 0 0 . . . 0
I 0 0 . . . 0
...

...
...

...
...

I 0 0 . . . 0

⎞

⎟
⎟
⎟
⎠

. (46)

Denote

vt = F(αt , X̄t , w̄t ) − G(αt , X̄t ). (47)

Proposition 5: By assumptions A2 the following inequality
holds

E max
1≤t≤T

||
t∑

i=1

vt ||2 ≤ 4n
T∑

t=1

E||vt ||2. (48)

Proof: Under the conditions A2 random elements vt are
martingale differences, i.e., they are centered with respect to
the conditional averaging of the background: EFt−1 vt = 0. So,
[44, Sec.3, Lemma 1] is applicable. The dimension of vectors
vt is nd̄ , but since only the first n components of vectors vt

are nonzero, then it is possible to use in the estimation the
value of n instead of nd̄ .

Proposition 6: Let the sequence of numbers μt ≥ 0,
t = 0, 1, . . . , T satisfies the inequalities

μt+1 ≤ ᾱc1τt + c22d̄τt

t∑

k=1

αkμk, c1, c2 ≥ 0, (49)

then

μt ≤ c1τt e
c2τ

2
t ᾱ. (50)

Proof: Statement of Proposition follows directly from
discrete Gronwall’s inequality (or from the corresponding
result in [45]).

Proposition 7: By assumptions A1, A2 yields

E||X̄t ||2 ≤ (
2nL2 + ᾱ2c̃

c3
+ ||X̄0||2)et ln(c3+1). (51)
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Proof: We write equation (11) as

X̄t+1 = U X̄t + G(αt , X̄t ) + vt . (52)

For the squared norm of X̄t+1 we have

||X̄t+1||2 = ||U X̄t + G(αt , X̄t )||2 + 2(U X̄t + G(αt , X̄t ))
Tvt

+ ||vt ||2. (53)

Taking the conditional expectation of both parts of (53) on
σ -algebra Ft−1 (i.e., for fixed X̄t ) by the centrality of vt we
obtain

EFt−1 ||X̄t+1||2 = ||U X̄t + G(αt , X̄t )||2 + EFt−1 ||vt ||2
≤ 2||U X̄t ||2 + 2||G(αt , X̄t )||2 + EFt−1 ||vt ||2.

(54)

By the form of vt and Lipschitz property in u of
functions f i (u) (by A1), for ||vt ||2 we have

||vt ||2 =
∑

i∈N

| f i (xi
t , αt

∑

j∈N̄ i
t

bi, j
t (x j

t−di, j
t

− xi
t + wi, j

t − wi,i
t ))

− f i (xi
t , αt s

i
t (X̄t ))|2 ≤ L2

1||ūt − αt s̄t ||2. (55)

Under the conditions A2, random variables EFt−1 ui
t , i ∈ N

satisfy the conditions of Proposition 3

EFt−1 ||vt ||2 = α2
t L2

1(2nb̄||X̄t ||2 + 2n2b̄σ 2
w). (56)

Consistently evaluating all three summands on the right
hand side of (54) and taking into account the results of
Propositions 4, 2 and 3, we deduce

EFt ||X̄t+1||2
≤ 2d̃ ||X̄t ||2 + 21+d̃/2||X̄t ||L1(Lx ||X̄t || + αt ||s̄||)

+ L2(nLc + Lx ||X̄t ||2 + α2
t ||s̄||2)

+ α2
t L2

1(2nb̄||X̄t ||2 + 2nb̄σ 2
w)

≤ (2d̃ + 21+d̃/2 L1 Lx + L2 Lx + αt 21+d̃/2 L1||L (Amax)||2
+ α2

t (L2||L (Amax)||22 + 2nL2
1b̄))||X̄t ||2 + nL2 Lc

+ 2α2
t nL2

1b̄σ 2
w ≤ c̄ + c̄3||X̄t ||2, (57)

where c̄ = nL2 Lc + α2
t c̃, c̄3 = c3 + 1.

By taking unconditional expectation of both parts of this
inequality and consistently iterating on t , we obtain
Proposition 7

E||X̄t ||2 ≤ c̄ + c̄3E||X̄t−1||2 ≤ c̄ + c̄c̄3 + c̄2
3E||X̄t−2||2

≤ c̄(1 + c̄3 + c̄2
3 + . . . + c̄t−1

3 ) + c̄t
3||X̄0||2

≤ c̄
c̄t

3 − 1

c3
+ c̄t

3||X̄0||2

≤
(

c̄

c3
+ ||X̄0||2

)

c̄t
3 ≤ (c̄4 + ||X̄0||2)et ln c̄3, (58)

where c̄4 = c̄/c3.
By condition A2 averaging with respect to σ -algebras

F d
t and Ft yields EFt vt = 0. By iterating equation (11) for t,

t − 1, . . . t − d + 1 we obtain

X̄t+1

= U X̄t + G(αt , X̄t ) + vt

= U2 X̄t−1 + U G(αt−1, X̄t−1) + G(αt , X̄t ) + Uvt−1 + vt

= · · · = Ut+1 X̄0 +
t∑

k=0

Ut−kG(αk, X̄k) +
t∑

k=0

Ut−kvk . (59)

Similarly we obtain

Z̄t+1 = Ut+1 X̄0 +
t∑

k=0

Ut−kG(αk , Z̄k). (60)

Let us estimate ||X̄t − Z̄t ||2, t = 1, . . . , T . Denote
gk = Ut−k(G(αk, X̄k) − G(αk, Z̄k)). By subtracting (60)
from (59) and squaring the result we obtain

||X̄t − Z̄t ||2 = ||
t∑

k=1

Ut−kvk +
t∑

k=1

gk||2

≤ 2||
t∑

k=1

Ut−kvk ||2 + 2||
t∑

k=1

gk||2

≤ 2||
t∑

k=1

Ut−kvk ||2 + 2
τt

2d̄

t∑

k=1

1

αt
||gk||2, (61)

since

||
t∑

k=1

√
αk

1√
αk

gk ||2 ≤
t∑

k=1

αk

t∑

k=1

1

αk
||gk||2

= τt

2d̄

t∑

k=1

1

αt
||gk||2

For the summands in the second sum of (61) using
Propositions 2, 4 and Lipschitz condition f i (·, ·)
(assumption A1) we obtain

||Ut−k(G(αk, X̄k) − G(αk, Z̄k))||2

≤ 2d̄ L2
1

n∑

i=1

(Lx |xi
k − zi

k | + αk |s(xi
k) − s(zi

k)|)2

≤ 21+d̄ L2
1

n∑

i=1

Lx |xi
k − zi

k |2 + α2
k s(xi

k − zi
k)

2

≤ 21+d̄ L2
1(Lx + 2α2

k ||L (Amax)||22)||X̄k − Z̄k ||2 (62)

We take expectation of both parts of (61) and denote
μT = max

0≤t≤T
E||X̄t − Z̄t ||2. By applying Proposition 5 to

the first summand and obtained above estimate of the second
summand we obtain

μT ≤ 23+d̄n
T∑

k=1

E||vk ||2

+ 2τT L2
1

t∑

k=1

(
Lx

α
+ 2αk ||L (Amax)||22)μk . (63)

To estimate E||vk ||2 by using previously obtained relation (56)
and the result of Proposition 7 we deduce

E||vk ||2 ≤ α2
k (c̃ + ĉ(c̄4 + ||X̄0||2)ek ln(c3+1)) (64)
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and hence

23+d̄n
T∑

k=1

E||vk ||2 ≤ ᾱ2d̄8nτT (c̃+ ĉ(c̄4+ ||X̄0||2)eT ln(c3+1)).

(65)

By the following relation 2d̄ ∑t
k=1 α2

k ≤ ᾱ2d̄ ∑t
k=1

αk = 2d̄ ᾱτt , considering estimates (65) from (63),
we have

EμT ≤ ᾱc1τT + c2τT 2d̄
T∑

k=1

αkEμk . (66)

From last inequality (66) by applying Proposition 6 we get
the conclusion of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Proof: Denote x� as consensus value of discrete
system (14). From the first group of conditions of Theorem 2
the conditions of Theorem 1 hold. From other conditions of
Theorem 2 and the result of Theorem 1 we obtain

E||X̄t − x�1||2 ≤ 2E||X̄t − Z̄t ||2 + 2||Z̄t − x�1||2
≤ ε

2
+ ε

2
≤ ε. (67)

APPENDIX C
PROOF OF THEOREM 3

Proof: The result of Theorem 3 is derived from
Theorem 2.

All row sums of elements of the matrix L̄ = (I − U) −
L (αAmax) are equal to zero and, moreover, all the diagonal
elements are positive and equal to the absolute value of the
sum of all the other elements in the row, which are negative.
Hence the matrix L̄ is the Laplacian of a graph and a vector of
1’s 1 is the right eigenvector corresponding to zero eigenvalue.

By condition A3, the graph corresponding to the
Laplacian L̄ has a spanning tree. By condition A3 graph of
the first n nodes has a spanning tree. And units on (n + 1)-th
diagonal consistently connect n̄-th node with (n̄ − d̄)-th node,
(n̄ − 1)-th node with (n̄ − d̄ − 1)-th and so on. Hence the
asymptotic consensus is achieved in such a discrete system
since the condition α < 1

dmax
holds by the assumptions

of Theorem 3.
To satisfy the conditions of Theorem 2 it remains to show

that the constants C̄1 and C̄2 are the same as the corresponding
constants from Theorem 1. It follows from the fact that in this
case L1 = L2 = 1, Lx = Lc = 0.

APPENDIX D
PROOF OF LEMMA 1

Proof: We take xi
t = qi

t /pi
t as the state of agent i .

We give the proof by contradiction. Let x1
t , . . . , xn

t be
the optimal redistribution among all possible options for the
redistribution of jobs and denote T opt

t as a corresponding
minimum completion time. Assume that k ∈ N is a maximizer,

i.e. for some optimal strategy not all xi
t are equal to each other,

i.e., there is a agent with the number k ∈ N and the subset of
agents N ′

t such that xk
t > x j

t , ∀ j ∈ N ′
t .

Denoted by l = |N ′
t | the number of agents in N ′

t . The states
of other N N ′

t agents equal xk
t . Note, that |N N ′

t | = n − l.
Let the difference between the state of k-th agent and the

biggest of the state value of agents from the set N ′
t be equal

to εt , i.e.,

εt = xk
t − max

j ∈N ′
t

x j
t . (68)

Let’s consider the new strategy of job redistribution. Let
the amount of redistributed load be equal to ui

t = − εt
2(n−l)

for all i ∈ N N ′
t and u j

t = εt
2 for some j ∈ N ′

t . For the
new obtained set of loads x̃1

t , . . . , x̃ n
t we have that the overall

implementation time of jobs T̃t from (29) is less then T opt
t

on εt
2(n−l) , i.e. less then the minimum T opt

t by the assumption.
We get a contradiction. Hence, for optimal control strategy
all xi

t should be equal to each other.

APPENDIX E
PROOF OF THEOREM 4

Proof: You should verify if the conditions A1, A2 for the
considered protocol and functions f i (·, ·) are satisfied. If they
are satisfied, then all the conditions of Theorem 2 are satisfied
and the result is valid for this case.

The condition A1 holds since the function
f i (x, u) = −1 + u is linear in u. The condition A2
holds because of the formation rules for the weighting
coefficients in the protocol and stabilization conditions
for pi

t .
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